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Summary

Type 1 diabetes results from an interaction between genetic and environmen-
tal factors. Coxsackieviruses B (CV-B) are major environmental candidates, as
suggested by epidemiological and experimental studies. The mechanisms
leading to the disease involve interactions between the virus, host target tissue
(pancreas) and the immune system. The infection of target cells with viruses
can be prevented by antibodies. Conversely, the infection can be enhanced by
antibodies. The antibody-dependent enhancement (ADE) of infection has
been described with various viruses, especially Picornaviruses. In mice
infected with CV-B3 this phenomenon resulted in an extended inflammatory
reaction and myocarditis. In the human system non-neutralizing antibodies
can increase the infection of monocytes with CV-B4 and stimulate the pro-
duction of interferon (IFN)-a by these cells in vitro. CV-B4/immunoglobulin
(Ig)G immune complexes interacted with a specific viral receptor [Coxsack-
ievirus and adenovirus receptor (CAR)] and with IgG Fc fraction receptors
(FcgRII and FcgRIII) at the surface of monocytes. The virus–antibody com-
plexes are internalized (CAR) and receptors for the Fc of IgG (FcgRII and
FcgRIII). Such antibodies have been detected in patients with type 1 diabetes
and they could be responsible for the presence of enteroviral RNA and IFN-a
in peripheral blood mononuclear cells (PBMC) of these individuals. The
target of enhancing antibodies has been identified as the VP4 protein, which
allowed the detection of these antibodies by enzyme-linked immunosorbent
assay (ELISA). It cannot be excluded that antibodies enhancing the infection
with CV-B may play a role in the pathogenesis of type 1 diabetes, induced or
aggravated by these viruses. They can cause a viral escape from the immune
response and may participate in the spreading of viruses to b cells. Whether
enhancing antibodies raised against VP4 can play a role in iterative homolo-
gous and/or heterologous CV-B infections and in the persistence of viruses
within the host deserves further study.
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Antibodies can be foes

The rapidly increased incidence of T1 diabetes (T1D), espe-
cially in young individuals, is challenging [1]. Epidemiologi-
cal studies in neighbouring populations with similar genetic

profiles defend the hypothesis of an interaction between
genetic and environmental factors in the pathogenesis of
type 1 diabetes [2]. In addition to nutriments, drugs and
toxin, viruses are environmental factors that are supposed to
play a role in the development of the disease.
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Coxsackievirus-B (CV-B), belonging to the human
enterovirus B specie in the enterovirus genus of the Picor-
naviridae family, are major candidates as suggested by epi-
demiological and experimental studies [3–9].

The relationship between CV-B and type 1 diabetes prob-
ably involves an interplay between viruses, pancreatic b cells,
the innate and adaptive immune systems and host genes that
regulate the immune response to virus infections [6,10,11].
The host immune response to viral infections is advanta-
geous, but may result and/or participate in pathogenic pro-
cesses able to play a role in the development of autoimmune
diseases [12,13].

Inflammation, bystander activation of T cells, molecular
mimicry and disturbance of thymic function are not mutu-
ally exclusive mechanisms, possibly involved in the CV-B-
induced or aggravated development of T1D [14]. A
protective role of antibodies, able to prevent viruses from
infecting target cells, is well known; however, antibodies
against various viruses can increase the infection of target
cells [15].

This phenomenon, which is called antibody-dependent
enhancement (ADE) of infection, has been observed in the
infection with viruses belonging to the Picornaviridae
family. Antibodies can increase the infection of animal
peripheral blood mononuclear cells (PMNC) and macroph-
ages (and an animal macrophage-like cell line) with foot and
mouth disease virus (FMDV), belonging to the Aphtovirus
genus of this family [16]. In mice, the ADE of CV-B infection
has been investigated in vitro and in vivo. Murine anti-CV-B2
antibodies increase the infection of mouse macrophages
with CV-B3 in vitro and these antibodies, inoculated with
CV-B3 into mice, increased the level of virus in blood and
organs (heart, pancreas, spleen) that was associated with
tissue damage in exocrine pancreas and heart [17].

Mice without anti-CV-B3 antibodies, inoculated with
CV-B3, had moderate heart damage and inflammatory reac-
tion and low viral titres in heart tissue. Mice with high levels
of antibodies were totally protected. In contrast, low levels
of antibodies (following a first infection with a non-
myocarditic CV-B3) resulted in the animals inoculated
with CV-B3 in an extended inflammatory reaction and
myocarditis [18].

It cannot be discounted that the ADE of CV-B infection
may play a role in the CV-B-induced pathogenesis of type 1
diabetes, as presented in the next sections.

Antibody-dependent enhancement of CV-B infection
in the human system

Antibodies, Coxsackievirus B and interferon (IFN)-a

The circulation of IFN-a, together with the presence of
IFN mRNA and CV-B RNA in peripheral blood of patients
with type 1 diabetes [9,19,20], prompted our group to
investigate the mechanisms of CV-B-induced production of

IFN-a by PBMC, and thereafter we discovered the ADE
of the CV-B4-induced production of IFN-a by PBMC
[21]. It was observed that immunoglobulin (Ig)G, devoid
of neutralizing antibodies present in serum/plasma of
T1D patients and controls, interacting with the virus and
FcgRII and FcgRIII, increased the CV-B4-induced synthesis
of IFN-a by human PBMC in vitro, and that CV-B4/IgG
immune complexes bound Coxsackievirus and adenovirus
receptor (CAR) and IgG Fc fraction receptors (FcgRII and
FcgRIII) at the surface of monocytes [21]. In the presence
of CV-B4, PBMC of patients with type 1 diabetes but not
those of healthy controls produced high amounts of IFN-a,
which was due to anti-CV-B4 IgG bound to the surface of
PBMC through FcgRI and FcgRIII. When plasma samples
from patients with T1D were preincubated with CV-B4,
their enhancing activity was higher than those from healthy
controls [22].

Antibodies and Coxsackievirus B infection

It was demonstrated that the cells producing IFN-a in
response to CV-B4/IgG complexes were CD14+ monocytes
within monocyte-enriched PBMC [21]. This observation
prompted us to speculate that the synthesis of IFN-a in
these conditions was due to the infection of monocytes
with CV-B4. Indeed, non-neutralizing anti-CV-B4 IgG
increased the in-vitro infection of monocytes from periph-
eral blood with CV-B4, as suggested by the double indirect
immunofluorescence staining of PBMC with CD14 anti-
bodies and VP1 viral capsid antibodies [23]. Productive
viral replication was obtained in monocytes infected with
CV-B4 preincubated with plasma, as demonstrated by the
presence of intracellular plus-sense and minus-sense CV-B
RNA strands detected by reverse transcription–polymerase
chain reaction (RT–PCR) and by the release of infectious
particles in culture supernatant fluids [23]. The role of
CAR, FcgRII and FcgRIII in infection with CV-B4 mixed
with plasma, and the role of viral RNA entry in PBMC irre-
spective of viral RNA replication, as the mechanism of
CV-B4-induced synthesis of IFN-a in these cells, was dem-
onstrated (see Fig. 1) [23].

The target protein of antibodies increasing both the
CV-B3- and CV-B4-induced IFN-a production by PBMCs
and CV-B4 infection of PBMC was identified as capsid
protein VP4 [24,25]. The target epitope(s) of antibodies
increasing the CV-B3- or CV-B4-induced IFN-a produc-
tion by PBMCs is (are) located between amino acids 11 and
30 on protein VP4, which is made of 69 amino acids
[26].

The ability of facilitating antibodies from human plasma
to bind VP4 is intriguing because, in contrast with VP1 VP2
and VP3, which are the three other viral capsid proteins, VP4
is buried in the capsid according to X-ray crystallography
studies performed with viral particles at -196°C [27].
However, at physiological temperatures the viral conforma-
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tion is different, as antibodies in plasma can bind CV-B
through VP4 at 37°C. It can be explained by distorting the
viral particle at 37°C, consequently enabling exposure of VP4
on the capsid surface, as described previously for poliovirus
[28]. Whether a part of VP4 recognized by enhancing anti-
bodies is exhibited continuously by the virion or is exposed
following discontinuous conformational changes is an open
question.

It was observed that there was no cross-reaction between
enhancing antibodies directed towards the VP4 protein of
CV-B4 and those directed towards the VP4 protein of CV-B3
[24]. Bioinformatic analysis indicates that the 16–24 region
of CV-B4 VP4 is distinct from that of CV-B3 VP4. The 16–24
region of VP4 could be the target of enhancing antibodies
and the amino acid pattern of this area would participate in
the interserotype specificity. This region could bear the
intraserotype specificity of CV-B; approximately 64% of
homology was displayed by the in silico approach between
the 16–24 region of the VP4 of one CV-B4, taken as refer-
ence, and those of other CV-B4 VP4 sequences available
from the GenBank database. Homology between the 16–24
regions of VP4 in various CV-B3 sequences was also
observed (68·5%), but CV-B3 VP4 had homologies with
those of CV-B1 and CV-B5 (43·6 and 21·3%, respectively),
suggesting that a cross-reaction between CV-B3, CV-B1 and
CV-B5 cannot be excluded with regard to the binding of
enhancing antibodies [29].

Conclusion and perspective: the antibody-
dependent enhancement of CV-B infection
in the pathogenesis of T1D

In vivo, the ADE of infection can cause a viral escape from
the immune response and enables viruses to spread along
the whole organism and to persist for longer in increased
quantity. This phenomenon is responsible for the exacerba-
tion of diseases such as haemorrhagic dengue or respiratory
syncitial virus (RSV) bronchiolitis, and is also suggested to
be involved in the evolution of acquired immune deficiency
virus (AIDS). Moreover, studies of dengue virus (DV)
suggest that ADE of DV infection is related to a shift from a
T helper type 1 (Th1) type immune response to a Th2 type
response [15]. The pathogenic effects of ADE in various
viral infections suggest that the hypothesis of a role of the
ADE of CV-B infection in human beings, especially in the
context of the pathogenesis of T1D, cannot be discounted
(see Fig. 2).

The possible role of ADE of CV-B infection in vivo must
be considered. Indeed, production of IFN-a by PBMC asso-
ciated with the presence of CV-B that is observed in the
blood of patients with T1D can be due to enhancing anti-
bodies, as in diabetic patients the CV-B4-induced in-vitro
production of IFN-a by their PBMC depended upon
enhancing anti-CV-B4 IgG contained in their plasma or
bound at the surface of their mononuclear cells [22].
Enteroviral RNA sequences presenting homologies with
CV-B (CV-B2, CV-B3 or CV-B4) found by RT–PCR in cir-
culating blood of patients with type 1 diabetes may be the
result of an increased infection of PBMC through an
antibody-dependent mechanism [23].

Most human beings have been infected by at least one of
the six CV-B serotypes during their lifetime. Whether
enhancing antibodies raised against VP4 can play a role in
homologous and/or heterologous CV-B (HEV-Bs) infections
deserves further study.

These antibodies and repeated infection with CV-B can
result in the iterative production of IFN-a, which is not
blameless, as abnormal activation of IFN-a is associated
with the development of autoimmune reactions and may
play a part in autoimmunity towards b cells in genetically
predisposed individuals [30].

Another issue in which antibodies may intervene is the
spreading of CV-B to pancreas islet b cells through enhance-
ment of the infection with CV-B of monocytes acting as a
Trojan horse. The infection of b cells by CV-B through this
route can play a role in the induction of an inflammatory
response that is thought to be the initial disturbance of b
cells in the natural history of T1D [31,32].

The ADE of CV-B infection and the spreading of
viruses can be responsible for an increased quantity of viral
particles in the host, the role of which in the CV-B-induced
or aggravated pathogenesis of T1D could be critical, as sug-
gested by studies in animal models [33]. It remains to deter-

Fig. 1. Antibodies enhance the infection with Coxsackievirus-B4

(CV-B4). Antibodies (IgG) bind CV-B4 and the complex interacts

with the Coxsackievirus and adenovirus receptor (CAR) and with

immunoglobulin (Ig)G Fc fraction receptors (FcgRII and FcgRIII)

at the surface of monocytes. The virus–antibody complexes are

internalized within the cell and viral RNA is uncoated. Entry of viral

RNA stimulates the synthesis of interferon (IFN)-a. Viral RNA and

proteins are produced, assembled and viral particles are released. The

target of enhancing antibodies is a region of VP4.

IMMUNOLOGY IN THE CLINIC REVIEW SERIES

Antibodies and coxasckievirus B infection

49© 2011 The Authors
Clinical and Experimental Immunology © 2011 British Society for Immunology, Clinical and Experimental Immunology, 168: 47–51



mine whether pre-existing anti-CV-B antibodies exacerbate
CV-B infection and result in damage in b-cells in humans
beings like antibodies in CV-B3-induced heart tissue lesions
in mice [17,18].

The persistence of CV-B has been suggested to be one of
the mechanisms by which these viruses could induce b cell

destruction through prolonged activation of the immune
system, resulting in the induction of an anti-viral and
autoimmune response [34]. The possible role of enhancing
antibodies in the persistence of CV-B into the host and,
conversely, the role of a persistent CV-B infection in the
production of antibodies able to enhance reinfections with
CV-B, should not be discarded.

In addition to a possible role of the ADE of CV-B infec-
tion in the pathogenesis of virus-induced T1D, the exist-
ence of enhancing antibodies should prompt us to take
precautions when designing vaccines. Antigens inducing
facilitating antibodies able to worsen a subsequent infec-
tion can compromise vaccine safety, as has occurred in
children vaccinated with formalin-inactivated anti-RSV
preparation which resulted in an increased RSV replica-
tion in macrophages associated with severe pulmonary
pathology [35,36].
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